

P2BAE - NOx Exceedance - NOx Control Monitoring System.

Following DTC are the Probable cause for **P2BAE.**

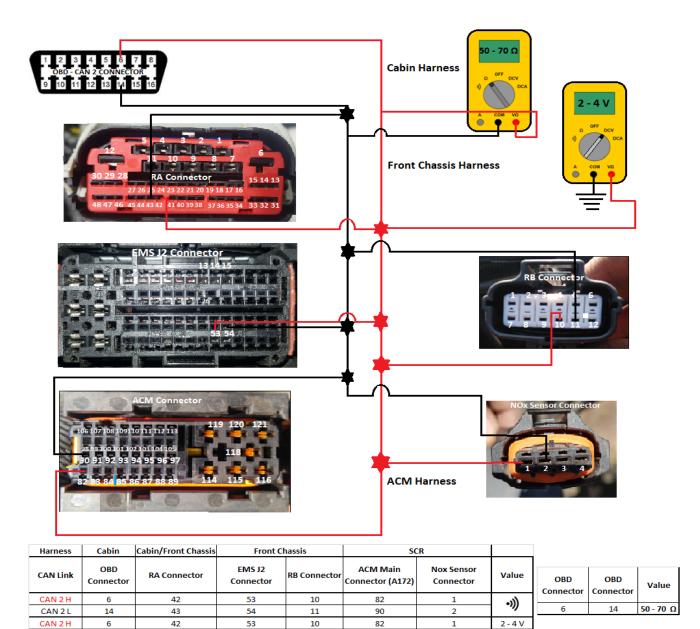
DTC	Device
U116F - Lost Communication with Reductant Control Module on Engine Subnet	CAN 2
U0080 - Vehicle Communication Engine Subnet	
U1146 - Lost Communication With ECM on Engine Subnet	
U029D - Lost Communication With NOx Sensor A""	
U0010 - CAN Communication Backbone 1 Net	CAN 1
U0001 - CAN Communication Backbone 2 Net	CAN 3
P2200 - NOx Sensor Bank 1 Sensor 1	Nox Sensor
P2203 - NOx Sensor Circuit High Bank 1 Sensor 1	
P220A - NOx Sensor Supply Voltage Circuit (Bank 1 Sensor 1)	
P220E - NOx Sensor Heater Control Circuit Range/Performance (Bank 1 Sensor 1)	
P225D - NOx Sensor Performance - Signal Stuck Low Bank 1 Sensor 1	
P22FB - NOx Sensor Performance - Sensing Element Bank 1 Sensor 1	
P009A - Engine Air Intake Temperature Correlation	Boost Pressure Sensor
P2226 - Barometric Pressure Circuit	EMS
P2227 - Barometric Pressure Sensor A" Circuit Range/Performance"	
P2229 - Barometric Pressure Circuit High	

- 1. Please refer respective DTC diagnostic sheet for trouble shooting.
- 2. After rectifying root cause DTC update the EMS and then follow the Dynamic Healing procedure.

Driving Cycle (Healing) for BSIV vehicle

- Start the engine and increase the coolant temperature more than 70 °C
- Maintain vehicle the ambient temperature below **25°C**.
- Run the vehicle with the RPM between **1600-1900** constantly in **3**rd & **4**th Gear
- The urea dosing will take place once the exhaust temperature is above 270°C.
- The amount of urea dosed should be **50-70** grams per Cycle.
- Maintain the torque **350 nm** and above
- MIL lamp will continue to glow and for clearing the MIL lamp we need to continue the same cycle **consecutively 3** times.
- Turn off the vehicle for **30 second**s between the cycles.

Note: - If the driving cycle is not consecutive, MIL will not be deactivated.


3. Even after Consecutive Driving cycle if P2BAE is active and vehicle is out of torque limitation mode replace the EMS.

CAN 2 L

14

- **U0080 Vehicle Communication Engine Subnet**
- U116F Lost Communication with Reductant Control Module on Engine Subnet
- U1146 Lost Communication with ECM on Engine Subnet
- U029D Lost Communication with NOx Sensor A""

1.	Check for resistance in the CAN 2 OBD Connector 6 th & 14 th pin. (50 – 70 Ohms)

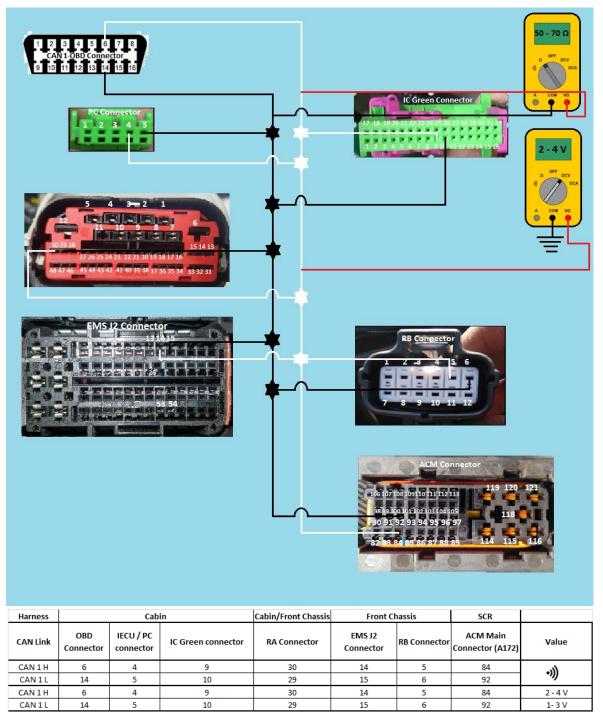
54

2. Check continuity between OBD -6 to RA- 42 |EMS J2- 53 |RB - 10 |ACM - 82 |NOx -1

11

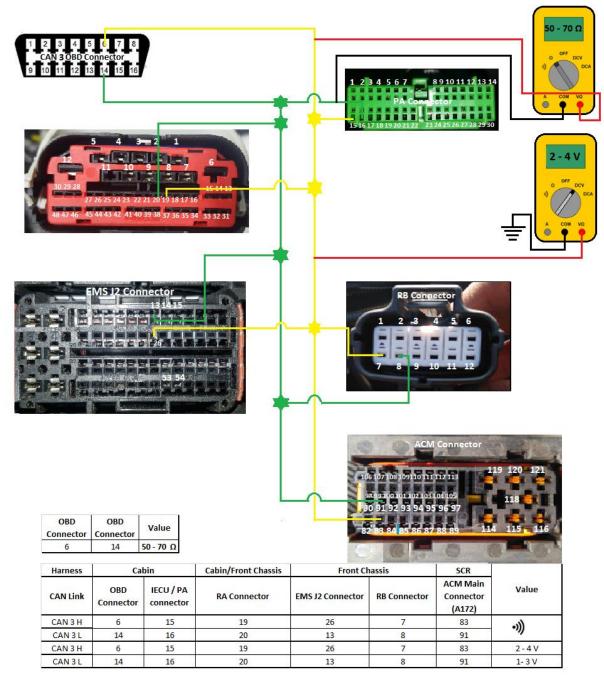
90

2

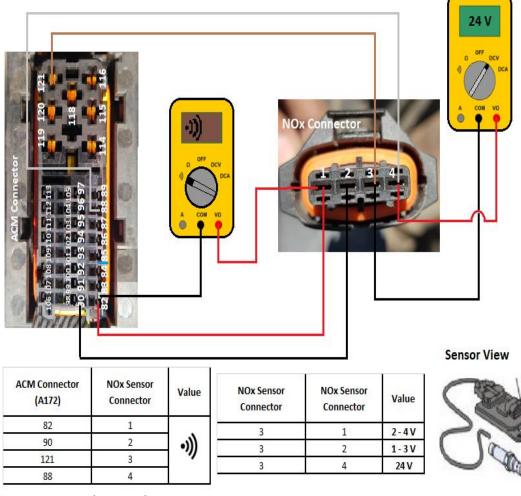

1-3 V

- 3. Check continuity between OBD -14 to RA- 43 |EMS J2- 54|RB 11 |ACM 90 |NOx -2
- 4. Check voltage between Gnd to RA- 42 |EMS J2- 53 |RB 10 |ACM 82 | NOx -1 (2 4 V)
- 5. Check voltage between Gnd to RA- 43 |EMS J2- 54 |RB 11 |ACM 90 | NOx -2 (1 -3 V)
- 6. If continuity and voltage is ok replace the ACM .

43

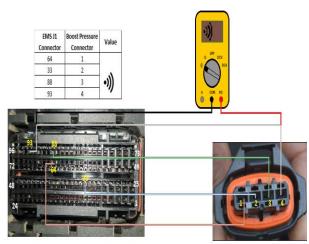

U0010 - CAN Communication Backbone 1 Net

- 1. Check for resistance in the CAN 1 OBD Connector 6th & 14th pin. (50 70 Ohms)
- 2. Check continuity between OBD -6 to PC- 4 |IC- 9|RA 30|EMS J2- 14|RB 5 |ACM 84.
- 3. Check continuity between OBD -14 to PC- 5 |IC- 10|RA 29|EMS J2- 15|RB 6 |ACM -92.
- 4. Check voltage between Gnd to PC- 4 |IC- 9|RA 30|EMS J2- 14|RB 5 |ACM 84 (2 4 V)
- 5. Check voltage between Gnd to PC- 5 |IC- 10|RA 29|EMS J2- 15|RB 6 |ACM –92 (1 -3 V)
- 6. If continuity and voltage is ok replace the EMS.


U0001 - CAN Communication Backbone 2 Net

- 1. Check for resistance in the CAN 3 OBD Connector 6th & 14th pin. (50 70 Ohms)
- 2. Check continuity between OBD -6 to PA- 15 |RA 19|EMS J2- 26|RB 7 |ACM 83.
- 3. Check continuity between OBD -14 to PA- 16|RA 20|EMS J2- 13|RB 8 |ACM -91.
- 4. Check voltage between Gnd to PA- 15 |RA 19|EMS J2- 26|RB 7 |ACM 83 (2 4 V)
- 5. Check voltage between Gnd 14 to PA- 16 | RA 20 | EMS J2- 13 | RB 8 | ACM -91 (1 -3 V)
- 6. If continuity and voltage is ok replace the EMS | IECU

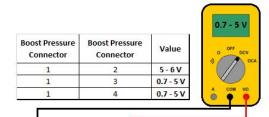
- P2200 NOx Sensor Bank 1 Sensor 1
- P2203 NOx Sensor Circuit High Bank 1 Sensor 1
- P220A NOx Sensor Supply Voltage Circuit (Bank 1 Sensor 1)
- P220E NOx Sensor Heater Control Circuit Range /Performance (Bank 1 Sensor 1)
- P225D NOx Sensor Performance Signal Stuck Low Bank 1 Sensor 1
- P22FB NOx Sensor Performance Sensing Element Bank 1 Sensor 1
 - 1. Check loose connection of sensor connector.
 - 2. Check the continuity between ACM to NOx sensor.
 - 3. Check resistance between NOx Sensor Pin 1 & Pin 2 (50 70 Ω)
 - 4. Check voltage between Gnd and NOx Sensor connector

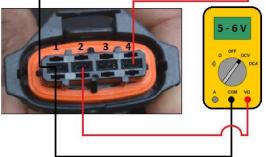


- **5.** If Continuity not there replace Harness.
- 6. If resistance & Voltage are not in range replace Nox Sensor .



P009A - Engine Air Intake Temperature – Correlation


- Check that the connectors are properly connected and locked into position.
- **2.** Disconnect and check the component connector.
- 3. Inspect pins and terminals for oxidations or corrosion.
- Check for ideal Boost pressure in Tech Tool (~ 94 – 102 kpa)
- 5. Check for Continuity between EMS J2 Connector & Boost Pressure Sensor Connector.



6. Check resistance at Boost Pressure sensor pin

- 7. If values are not in range replace **Boost Pressure Sensor**.
- 8. Check for voltage at Boost pressure connector

9. If voltage value is not in range go for EMS replacement.

P2226 - Barometric Pressure Circuit P2227 - Barometric Pressure Sensor A" Circuit Range/Performance" P2229 - Barometric Pressure Circuit High

- 1. Check that the EMS connectors are properly connected and locked into position.
- 2. Disconnect and check the EMS component connector.
- **3.** Barometric Sensor in –built in EMS.
- 4. If it ok, Replace EMS.